Posted on Leave a comment

Changes of tibia bone properties after spinal cord injury: effects of early intervention.

date: 02/01/1999
author: De Bruin ED, Frey-Rindova P, Herzog RE, Dietz V, Dambacher MA, Stussi E.
publication: Arch Physical Medicine Rehabilitation. 1999 Feb;80(2):214-20.
pubmed_ID: 10025500

OBJECTIVE: To evaluate the effectiveness of an early intervention program for attenuating bone mineral density loss after acute spinal cord injury (SCI) and to estimate the usefulness of a multimodality approach in diagnosing osteoporosis in SCI. DESIGN: A single-case, experimental, multiple-baseline design. SETTING: An SCI center in a university hospital. METHODS: Early loading intervention with weight-bearing by standing and treadmill walking. PATIENTS: Nineteen patients with acute SCI. OUTCOME MEASURES: (1) Bone density by peripheral computed tomography and (2) flexural wave propagation velocity with a biomechanical testing method. RESULTS: Analysis of the bone density data revealed a marked decrease of trabecular bone in the nonintervention subjects, whereas early mobilized subjects showed no or insignificant loss of trabecular bone. A significant change was observed in 3 of 10 subjects for maximal and minimal area moment of inertia. Measurements in 19 subjects 5 weeks postinjury revealed a significant correlation between the calculated bending stiffness of the tibia and the maximal and minimal area moment of inertia, respectively. CONCLUSION: A controlled, single-case, experimental design can contribute to an efficient tracing of the natural history of bone mineral density and can provide relevant information concerning the efficacy of early loading intervention in SCI. The combination of bone density and structural analysis could, in the long term, provide improved fracture risk prediction in patients with SCI and a refined understanding of the bone remodeling processes during initial immobilization after injury.

Posted on Leave a comment

Mobility status and bone density in cerebral palsy.

date: 08/01/1996
author: Wilmshurst S, Ward K, Adams JE, Langton CM, Mughal MZ.
publication: Arch Dis Child. 1996 Aug;75(2):164-5.
pubmed_ID: 8869203

The spinal bone mineral density (SBMD) and calcaneal broadband ultrasound attenuation (BUA) was measured in 27 children with cerebral palsy. They were categorised into four mobility groups: mobile with an abnormal gait, mobile with assistance, non-mobile but weight bearing, non-mobile or weight bearing. Mean SD scores for BUA and SBMD differed among mobility groups (analysis of variance, p < 0.001 and p = 0.078, respectively).

Posted on Leave a comment

Effect of prolonged bed rest on bone mineral.

date: 12/19/1970
author: Donaldson CL, Hulley SB, Vogel JM, Hattner RS, Bayers JH, McMillan DE.
publication: Metabolism. 1970 Dec; 19(12): 1071-84
pubmed_ID: 4321644
Outside_URL: http://www.ncbi.nlm.nih.gov/pubmed/4321644
Bone mineral is lost during immobilization. This disuse osteopenia occurs locally in patients with fracture or hemiplegia and is generalized in quadriplegia.

Posted on Leave a comment

Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies.

date: 01/01/2006
author: Giangregorio L, McCartney N.
publication: J Spinal Cord Med. 2006;29(5):489-500.
pubmed_ID: 17274487

Individuals with spinal cord injury (SCI) often experience bone loss and muscle atrophy. Muscle atrophy can result in reduced metabolic rate and increase the risk of metabolic disorders. Sublesional osteoporosis predisposes individuals with SCI to an increased risk of low-trauma fracture. Fractures in people with SCI have been reported during transfers from bed to chair, and while being turned in bed. The bone loss and muscle atrophy that occur after SCI are substantial and may be influenced by factors such as completeness of injury or time post injury. A number of interventions, including standing, electrically stimulated cycling or resistance training, and walking exercises have been explored with the aim of reducing bone loss and/or increasing bone mass and muscle mass in individuals with SCI. Exercise with electrical stimulation appears to increase muscle mass and/or prevent atrophy, but studies investigating its effect on bone are conflicting. Several methodological limitations in exercise studies with individuals with SCI to date limit our ability to confirm the utility of exercise for improving skeletal status. The impact of standing or walking exercises on muscle and bone has not been well established. Future research should carefully consider the study design, skeletal measurement sites, and the measurement techniques used in order to facilitate sound conclusions.

Posted on Leave a comment

Skeletal adaptations to alterations in weight-bearing activity: a comparison of models of disuse osteoporosis.

date: 01/01/2001
author: Giangregorio L, Blimkie CJ.
publication: Sports Med. 2002;32(7):459-76.
pubmed_ID: 12015807

The removal of regular weight-bearing activity generates a skeletal adaptive response in both humans and animals, resulting in a loss of bone mineral. Human models of disuse osteoporosis, namely bed rest, spinal cord injury and exposure to micro-gravity demonstrate the negative calcium balance, alterations in biochemical markers of bone turnover and resultant loss of bone mineral in the lower limbs that occurs with reduced weight-bearing loading. The site-specific nature of the bone response is consistent in all models of disuse; however, the magnitude of the skeletal adaptive response may differ across models. It is important to understand the various manifestations of disuse osteoporosis, particularly when extrapolating knowledge gained from research using one model and applying it to another. In rats, hindlimb unloading and exposure to micro-gravity also result in a significant bone response. Bone mineral is lost, and changes in calcium metabolism and biochemical markers of bone turnover similar to humans are noted. Restoration of bone mineral that has been lost because of a period of reduced weight bearing may be restored upon return to normal activity; however, the recovery may not be complete and/or may take longer than the time course of the original bone loss. Fluid shear stress and altered cytokine activity may be mechanistic features of disuse osteoporosis. Current literature for the most common human and animal models of disuse osteoporosis has been reviewed, and the bone responses across models compared.

Posted on Leave a comment

Bone-loading response varies with strain magnitude and cycle number.

date: 11/01/2001
author: Cullen DM, Smith RT, Akhter MP.
publication: J Appl Physiol. 2001 Nov;91(5):1971-6.
pubmed_ID: 11641332

Mechanical loading stimulates bone formation and regulates bone size, shape, and strength. It is recognized that strain magnitude, strain rate, and frequency are variables that explain bone stimulation. Early loading studies have shown that a low number (36) of cycles/day (cyc) induced maximal bone formation when strains were high (2,000 microepsilon) (Rubin CT and Lanyon LE. J Bone Joint Surg Am 66: 397-402, 1984). This study examines whether cycle number directly affects the bone response to loading and whether cycle number for activation of formation varies with load magnitude at low frequency. The adult rat tibiae were loaded in four-point bending at 25 (-800 microepsilon) or 30 N (-1,000 microepsilon) for 0, 40, 120, or 400 cyc at 2 Hz for 3 wk. Differences in periosteal and endocortical formation were examined by histomorphometry. Loading did not stimulate bone formation at 40 cyc. Compared with control tibiae, tibiae loaded at -800 microepsilon showed 2.8-fold greater periosteal bone formation rate at 400 cyc but no differences in endocortical formation. Tibiae loaded at -1,000 microepsilon and 120 or 400 cyc had 8- to 10-fold greater periosteal formation rate, 2- to 3-fold greater formation surface, and 1-fold greater endocortical formation surface than control. As applied load or strain magnitude decreased, the number of cyc required for activation of formation increased. We conclude that, at constant frequency, the number of cyc required to activate formation is dependent on strain and that, as number of cyc increases, the bone response increases.

Posted on Leave a comment

Nonoperative treatment of osteogenesis imperfecta: orthotic and mobility management.

date: 09/01/1981
author: Bleck EE.
publication: Clin Orthop Relat Res. 1981 Sep;(159):111-22.
pubmed_ID: 7285447

The problem of osteoporosis superimposed on the basic collagen defect of osteogenesis imperfecta has been approached by the use of plastic containment orthoses for the lower limbs, in addition to developmentally staged mobility devices that assist early standing and walking. The purpose of forcing early weight-bearing is to provide stress to the lower limb bones in order to minimize osteoporosis, prevent refracture and deformity, and curb subsequent immobilization osteoporosis, thus breaking a vicious cycle. Management goals are based upon adult needs for independence: efficiency in daily living activities and in mobility. These goals were reached in most of our patients via use of plastic orthoses, early weight-bearing, and electrically powered wheelchairs. Manual osteoclasis of the tibia followed by plastic orthoses utilizing principles of fluid compression to support fractured or structurally weak bones appeared successful at the time of follow-up. Intramedullary rodding of the femur was necessary in most of the 12 children with osteogenesis imperfecta congenita. Supplementary plastic orthoses have reduced the refracture rate in both the tibia and the femur. Social integration of the children was reflected by the fact that among the 12 OI congenita cases, ten were attending regular educational institutions. Twelve OI tarda children fared well, all attaining complete independence in daily living, mobility and ambulation. Seven of this group were treated with intramedullary rodding of the femur or tibia and with plastic orthoses. Five patients required no treatment.

Posted on Leave a comment

Considerations related to weight-bearing programs in children with developmental disabilities.

date: 01/01/1992
author: Stuberg WA.
publication: Phys Ther. 1992 Jan;72(1):35-40.
pubmed_ID: 1728047

Standing is a common modality used in the management of children with developmental disabilities. The purpose of this article is to examine the scientific basis for standing programs, with specific emphasis on the known effects of weight bearing on bone development. Guidelines for the use of standing programs are presented, and the supporting rationale is discussed.