Posted on

Low magnitude mechanical loading is osteogenic in children with disabling conditions.

date:2004 Mar;19(3):360-9.
author: Ward K1, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z.
publication: J. Bone Miner Res

pubmed_ID: 15040823

 

Abstract

The osteogenic potential of short durations of low-level mechanical stimuli was examined in children with disabling conditions. The mean change in tibia vTBMD was +6.3% in the intervention group compared with -11.9% in the control group. This pilot randomized controlled trial provides preliminary evidence that low-level mechanical stimuli represent a noninvasive, non-pharmacological treatment of low BMD in children with disabling conditions.

INTRODUCTION:

Recent animal studies have demonstrated the anabolic potential of lowmagnitude, high-frequency mechanical stimuli to the trabecular bone of weight-bearing regions of the skeleton. The main aim of this prospective, double-blind, randomized placebo-controlled pilot trial (RCT) was to examine whether these signals could effectively increase tibial and spinal volumetric trabecular BMD (vTBMD; mg/ml) in children with disabling conditions.

MATERIALS AND METHODS:

Twenty pre-or postpubertal disabled, ambulant, children (14 males, 6 females; mean age, 9.1 +/- 4.3 years; range, 4-19 years) were randomized to standing on active (n = 10; 0.3g, 90 Hz) or placebo (n = 10) devices for 10 minutes/day, 5 days/week for 6 months. The primary outcomes of the trial were proximal tibial and spinal (L2) vTBMD (mg/ml), measured using 3-D QCT. Posthoc analyses were performed to determine whether the treatment had an effect on diaphyseal cortical bone and muscle parameters.

RESULTS AND CONCLUSIONS:

Compliance was 44% (4.4 minutes per day), as determined by mean time on treatment (567.9 minutes) compared with expected time on treatment over the 6 months (1300 minutes). After 6 months, the mean change in proximal tibial vTBMD in children who stood on active devices was 6.27 mg/ml (+6.3%); in children who stood on placebo devices, vTBMD decreased by -9.45 mg/ml (-11.9%). Thus, the net benefit of treatment was +15.72 mg/ml (17.7%; p = 0.0033). In the spine, the net benefit of treatment, compared with placebo, was +6.72 mg/ml, (p = 0.14). Diaphyseal bone and muscle parameters did not show a response to treatment. The results of this pilot RCT have shown for the first time that lowmagnitude, high-frequency mechanical stimuli are anabolic to trabecular bone in children, possibly by providing a surrogate for suppressed muscular activity in the disabled. Over the course of a longer treatment period, harnessing bone’s sensitivity to these stimuli may provide a non-pharmacological treatment for bone fragility in children.

 

Posted on

Vibration treatment in cerebral palsy: A randomized controlled pilot study.

date: 2010 Mar;10(1):77-83.
author: Ruck J1, Chabot G, Rauch F.
publication: J Musculoskelet Neuronal Interact.
pubmed_ID:20190383

Abstract

In this 6-month trial, twenty children with cerebral palsy (age 6.2 to 12.3 years; 6 girls) were randomized to either continue their school physiotherapy program unchanged or to receive 9 minutes of side-alternating whole-body vibration (WBV; Vibraflex Home Edition II, Orthometrix Inc) per school day in addition to their school physiotherapy program. Patients who had received vibration therapy increased the average walking speed in the 10 m walk test by a median of 0.18 ms(-1) (from a baseline of 0.47 ms(-1)), whereas there was no change in the control group (P=0.03 for the group difference in walking speed change). No significant group differences were detected for changes in areal bone mineral density (aBMD) at the lumbar spine, but at the distal femoral diaphysis aBMD increased in controls and decreased in the WBV group (P=0.03 for the group difference in aBMD change). About 1% of the WBV treatment sessions were interrupted because the child complained of fatigue or pain. In conclusion, the WBV protocol used in this study appears to be safe in children with cerebral palsy and may improve mobility function but we did not detect a positive treatment effect on bone

Posted on

A randomised controlled trial of standing programme on bone mineral density in non-ambulant children with cerebral palsy.

date: 2004 Feb;89(2):131-5
author: Caulton J.
publication:Arch Dis Child.
pubmed_ID: 14736627

Abstract

BACKGROUND:

Severely disabled children with cerebral palsy (CP) are prone to low trauma fractures, which are associated with reduced bone mineral density.

AIMS:

To determine whether participation in 50% longer periods of standing (in either upright or semi-prone standing frames) would lead to an increase in the vertebral and proximal tibial volumetric trabecular bone mineral density (vTBMD) of non-ambulant children with CP.

METHODS:

A heterogeneous group of 26 pre-pubertal children with CP (14 boys, 12 girls; age 4.3-10.8 years) participated in this randomised controlled trial. Subjects were matched into pairs using baseline vertebral vTBMD standard deviation scores. Children within the pairs were randomly allocated to either intervention (50% increase in the regular standing duration) or control (no increase in the regular standing duration) groups. Pre- and post-trial vertebral and proximal tibial vTBMD was measured by quantitative computed tomography (QCT).

RESULTS:

The median standing duration was 80.5% (9.5-102%) and 140.6% (108.7-152.2%) of the baseline standing duration in the control group and intervention group respectively. The mean vertebral vTBMD in the intervention group showed an increase of 8.16 mg/cm3 representing a 6% mean increase in vertebral vTBMD. No change was observed in the mean proximal tibial vTBMD.

CONCLUSION:

A longer period of standing in non-ambulant children with CP improves vertebral but not proximal tibial vTBMD. Such an intervention might reduce the risk of vertebral fractures but is unlikely to reduce the risk of lower limb fractures in children with CP.

Posted on

Load redistribution in variable position wheelchairs in people with spinal cord injury.

date: 2010;33(1):58-64
author: Sprigle S.
publication: J Spinal Cord Med.
pubmed_ID::20397444

Abstract

BACKGROUND/OBJECTIVE:

Tilt and recline variable position seating systems are most commonly used for pressure relief to decrease potential for skin breakdown. This study provides quantitative information on the magnitudes of loading on the seat and back during phases of tilt, recline, and standing. The objective of this study was to show that the amount of force reduction at the seat would differ across these 3 methods within their respective clinical ranges.

PARTICIPANTS:

Six able-bodied (AB) subjects (2 men, 4 women) with a median age of 25 years, and 10 subjects (8 men, 2 women) with spinal cord injury (SCI) with a median age of 35.5 years.

METHODS:

Subjects sat on a power wheelchair with Tekscan pressure mats placed underneath a foam backrest and cushion. Data were collected at 5 positions for each method. Order of position and method tested were randomized. Linear regressions were used to calculate the relationships of normalized seat and backrest forces to seat and backrest angles for each chair configuration.

RESULTS:

Normalized seat loads had strong linear relationships with the angles of change in tilt, recline, and standing for both groups. Maximum decreases in seat load occurred at full standing and full recline in the SCI subjects and in full standing in the AB subjects. Loads linearly increased on the back during tilt and recline and linearly decreased during standing for both groups.

CONCLUSIONS:

Standing and recline offered similar seat load reductions at their respective terminal positions. Standing also reduced loading on the backrest. Recognizing that each method had clinical benefits and drawbacks, the results of this study indicate that tilt, recline, and standing systems should be considered as a means of weight shifting for wheelchair users.

Posted on

Quantifying weight-bearing by children with cerebral palsy while in passive standers.

date:  2007 Winter;19(4):283-7
author: Herman D.
publication:Pediatr Phys Ther.
pubmed_ID:18004195

Abstract

PURPOSE:

Children who are nonambulatory are placed into standers with the goal of providing benefits from weight-bearing. The purpose of this study was to quantify weight-bearing loads by children with cerebral palsy while in standers.

METHODS:

Electronic load-measuring footplates were fabricated specifically for this study. Weight-bearing loads were continuously measured in 19 children who were nonambulatory during routine 30-minute standing sessions (3-6 sessions/child, total 110 sessions).

RESULTS:

Weight-bearing ranged widely (23%-102%) with a mean of 68% of body weight. There was some variation over the course of a session and between different sessions, but more variance was noted between subjects.

CONCLUSIONS:

Actual weight borne in a stander is quite variable, and in some instances only a fraction of actual body weight. Further studies are required to delineate relevant factors and identify ways to maximize weight-bearing loads while in a stander.

Posted on

Trochanteric girdle to prevent hip dislocation in standing. Suggestion from the field

date: 1988 Feb;68(2):226-7.
author:Ruys EC1.
publication: Phys Ther
pubmed_ID:3340662

Excerpt

This article describes the use of a trochanteric girdle on a child with acetabular dysplasia to prevent hip displacement during weight-bearing. The patient was a boy 12 years of age with hypotonic athetosis and such severe acetabular dysplasia that his hips dislocated laterally with the slightest adduction beyond neutral. The patient’s hips subluxated proximally with weight-bearing or joint compression with only 20 degrees of abduction.

Posted on

Whole-body vibration training compared with resistance training: effect on spasticity, muscle strength and motor performance in adults with cerebral palsy.

date: 2006 Sep;38(5):302-8.
author: Ahlborg L1, Andersson C, Julin P.
publication: J Rehabil Med.
pubmed_ID: 16931460

Abstract

OBJECTIVE:

The aim of this study was to evaluate the effect on spasticity, muscle strength and motor performance after 8 weeks of whole-body vibration training compared with resistance training in adults with cerebral palsy.

METHODS:

Fourteen persons with spastic diplegia (21-41 years) were randomized to intervention with either whole-body vibration training (n=7) or resistance training (n=7). Pre- and post-training measures of spasticity using the modified Ashworth scale, muscle strength using isokinetic dynamometry, walking ability using Six-Minute Walk Test, balance using Timed Up and Go test and gross motor performance using Gross Motor Function Measure were performed.

RESULTS:

Spasticity decreased in knee extensors in the whole-body vibration group. Muscle strength increased in the resistance training group at the velocity 30 degrees /s and in both groups at 90 degrees /s. Six-Minute Walk Test and Timed Up and Go test did not change significantly. Gross Motor Function Measure increased in the whole-body vibration group.

CONCLUSION:

These data suggest that an 8-week intervention of whole-body vibration training or resistance training can increase muscle strength, without negative effect on spasticity, in adults with cerebral palsy.

Posted on

Vibration therapy

date:2009 Oct;51 Suppl 4:166-8
author:Rauch F1.
publication: Dev Med Child Neurol.
pubmed_ID:19740225

Abstract

Whole-body vibration training is a method for muscle strengthening that is increasingly used in a variety of clinical situations. Key descriptors of vibration devices include the frequency, the amplitude, and the direction of the vibration movement. In a typical vibration session, the user stands on the device in a static position or performs dynamic movements. Most authors hypothesize that vibrations stimulate muscle spindles and alpha-motoneurons, which initiate a muscle contraction. An immediate effect of a non-exhausting vibration session is an increase in muscle power. Most studies of the longer term use of vibration treatment in various disorders have pursued three therapeutic aims: increasing muscle strength, improving balance, and increasing bone mass. In a small pilot trial in children we noted improvements in standing function, lumbar spine bone mineral density, tibial bone mass, and calf muscle cross-sectional area.

Posted on

Effect of a new physiotherapy concept on bone mineral density, muscle force and gross motor function in children with bilateral cerebral palsy.

date: 2010 Jun;10(2):151-8
author: Stark C.
publication: J Musculoskelet Neuronal Interact.
pubmed_ID: 20516632

Abstract

OBJECTIVE:

The purpose of this study was to determine the effect of a new physiotherapy concept on bone density, muscle force and motor function in bilateral spastic cerebral palsy children.

METHODS:

In a retrospective data analysis 78 children were analysed. The concept included whole body vibration, physiotherapy, resistance training and treadmill training. The concept is structured in two in-patient stays and two periods of three months home-based vibration training. Outcome measures were dual-energy x-ray absorption (DXA), Leonardo Tilt Table and a modified Gross Motor Function Measure before and after six months of training.

RESULTS:

Percent changes were highly significant for bone mineral density, -content, muscle mass and significant for angle of verticalisation, muscle force and modified Gross Motor Function Measure after six months training.

CONCLUSIONS:

The new physiotherapy concept had a significant effect on bone mineral density, muscle force and gross motor function in bilateral spastic cerebral palsy children. This implicates an amelioration in all International Classification of Functioning, Disability and Health levels. The study serves as a basis for future research on evidence based paediatric physiotherapy taking into account developmental implications.

Posted on

Passive ankle dorsiflexion increases in patients after a regimen of tilt table-wedge board standing. A clinical report.

date: 1985 Nov;65(11):1676-8.
author: Bohannon RW, Larkin PA.
publication: Phys. Ther.

 pubmed_ID: 4059330

 

Abstract

We monitored the result of a tilt table-wedge board routine on the passive ankle dorsiflexion of 20 patients consecutively to determine the effectiveness of the treatment. The calculated frequency of the treatment, which was applied for 30 minutes on each of 5 to 22 treatment days, ranged from 2.3 to 6.4 treatments a week. All patients demonstrated increased passive ankle dorsiflexion. The increases ranged from 3 to 17 degrees and occurred at a calculated rate of 0.11 to 1.0 degrees a day. We believe the treatment is an effective clinical method for increasing passive ankle dorsiflexion in neurologically involved patients.