Posted on Leave a comment

Standing with the assistance of a tilt table improves minute ventilation in chronic critically ill patients.

date: 12/01/2004
author: Chang AT, Boots RJ, Hodges PW, Thomas PJ, Paratz JD.
publication: Arch Phys Med Rehabil. 2004 Dec;85(12):1972-6.
pubmed_ID: 15605335

OBJECTIVE: To investigate the effect of standing with assistance of the tilt table on ventilatory parameters and arterial blood gases in intensive care patients. DESIGN: Consecutive sample. SETTING: Tertiary referral hospital. PARTICIPANTS: Fifteen adult patients who had been intubated and mechanically ventilated for more than 5 days (3 subjects successfully weaned, 12 subjects being weaned). INTERVENTION: Passive tilting to 70 degrees from the horizontal for 5 minutes using a tilt table. MAIN OUTCOME MEASURES: Minute ventilation (VE), tidal volume (VT), respiratory rate, and arterial partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2). RESULTS: Standing in the tilted position for 5 minutes produced significant increases in VE (P <.001) and produced both increases in respiratory rate (P <.001) and VT (P =.016) compared with baseline levels. These changes were maintained during the tilt intervention and immediately posttilt. Twenty minutes after the tilt, there were no significant changes in ventilatory measures of VE, VT, or arterial blood gases PaO2 and PaCO2 compared with initial values. CONCLUSIONS: Standing for 5 minutes with assistance of a tilt table significantly increased ventilation in critical care patients during and immediately after the intervention. There were no improvements in gas exchange posttilt. Using a tilt table provided an effective method to increase ventilation in the short term.

Posted on Leave a comment

Randomised trial of the effects of four weeks of daily stretch on extensibility of hamstring muscles in people with spinal cord injuries.

date: 01/01/2003
author: Harvey LA, Byak AJ, Ostrovskaya M, Glinsky J, Katte L, Herbert RD.
publication: Aust J Physiother. 2003;49(3):176-81.
pubmed_ID: 12952517

The aim of this assessor-blind randomised controlled trial was to determine the effect of four weeks of 30 minute stretches each weekday on extensibility of the hamstring muscles in people with recent spinal cord injuries. A consecutive sample of 16 spinal cord-injured patients with no or minimal voluntary motor power in the lower limbs and insufficient hamstring muscle extensibility to enable optimal long sitting were recruited. Subjects’ legs were randomly allocated to experimental and control conditions. The hamstring muscles of the experimental leg of each subject were stretched with a 30 Nm torque at the hip for 30 minutes each weekday for four weeks. The hamstring muscles of the contralateral leg were not stretched during this period. Extensibility of the hamstring muscles (hip flexion range of motion with knee extended, measured with a 48 Nm torque at the hip) of both legs was measured by a blinded assessor at the commencement of the study and one day after the completion of the four-week stretch period. Changes in hamstring muscle extensibility from initial to final measurements were calculated. The effect of stretching was expressed as the mean difference in these changes between stretched and non-stretched legs. The mean effect of stretching was 1 degree (95% CI -2 to 5 degrees). Four weeks of 30 minute stretches each weekday does not affect the extensibility of the hamstring muscle in people with spinal cord injuries.

Posted on Leave a comment

New assistive technology for passive standing.

date: 03/01/1999
author: Gear AJ, Suber F, Neal JG, Nguyen WD, Edlich RF.
publication: J Burn Care Rehabil. 1999 Mar-Apr;20(2):164-9.
pubmed_ID: 10188115

The anesthetic skin of patients with spinal cord injuries makes these patients a high-risk population for burn injuries. Innovations in rehabilitation engineering can now provide the disabled with mechanical devices that allow for passive standing. Passive standing has been shown to counteract many of the effects of chronic immobilization and spinal cord injury, including bone demineralization, urinary calculi, cardiovascular instability, and reduced joint range of motion and muscular tone. This article will describe several unique assistive devices that allow for passive standing and an improvement in daily living for people with disabilities.

Posted on Leave a comment

Effect of dynamic weight bearing on neuromuscular activation after spinal cord injury.

date: 06/01/2007
author: Edwards LC, Layne CS.
publication: Am J Phys Med Rehabil. 2007 Jun;86(6):499-506.
pubmed_ID: 17515690

OBJECTIVE: To determine whether individuals who have a spinal cord injury have neuromuscular and physiologic responses to a personalized exercise program during dynamic weight bearing (DWB). DESIGN: Four subjects with spinal cord injuries (T6, T5-6, C2-5, and C5) completed a 12-wk exercise program that included DWB. Surface electromyography (EMG) was recorded from the right gastrocnemius, biceps femoris, rectus femoris, rectus abdominus, and external oblique. Heart rate (HR) and blood pressure (BP) were recorded throughout training. Descriptive statistics were used to analyze the data. RESULTS: The results of this study indicate that the subjects actively responded to exercise during DWB, as measured by EMG, HR, and BP. CONCLUSIONS: The results suggest that exercise during DWB can induce physiologic and neuromuscular responses in individuals who have a spinal cord injury, and that exercise during DWB may serve as a preparatory program for more advanced rehabilitation.

Posted on Leave a comment

Orthostasis and transcapillary fluid shifts.

date: 01/01/1995
author: Hinghofer-Szalkay HG.
publication: J Gravit Physiol. 1995;2(1):P131-3.
pubmed_ID: 11538896

Postural blood volume changes aggravate the regulation of arterial blood pressure and perfusion vis-a-vis the hydrostatic effects of orthostasis, ie, blood pooling below the hydrostatic indifferent points and reduced cardiac preload. Corresponding problems surface with extended passive standing, particularly in highly trained, dehydrated, or otherwise compromised subjects, or after long-lasting immobilization, as with space flight.

Posted on Leave a comment

A randomized trial evaluation of the Oswestry Standing Frame for patients after stroke.

date: 06/19/2005
author: Bagley P, Hudson M, Forster A, Smith J, Young J.
publication: Clin Rehabil. 2005 Jun;19(4):354-64.
pubmed_ID: 15929503
BACKGROUND: Standing is believed to have benefits in addressing motor and sensory impairments after stroke. One device to facilitate standing for severely disabled patients is the Oswestry Standing Frame. OBJECTIVE: To evaluate the effectiveness of the Oswestry Standing Frame for severely disabled stroke patients. DESIGN: A single centre, randomized controlled trial. SETTING: An inpatient stroke rehabilitation unit. SUBJECTS: Patients were recruited if they had a clinical diagnosis of stroke, were medically stable and unable to achieve any score on the Trunk Control Test or unable to stand in mid-line without the assistance of two therapists. INTERVENTION: The intervention (n = 71) and control (n = 69) groups both received usual stroke unit care but the intervention group also received a minimum of 14 consecutive days’ treatment using the standing frame. MAIN OUTCOME MEASURES: The primary outcome measure was the Rivermead Mobility Index (RMI). Secondary measures included the Barthel Index; the Rivermead Motor Assessment; the balanced sitting and sitting to standing components of the Motor Assessment Scale; the Trunk Control Test and the Hospital Anxiety and Depression Scale. Blind assessment was undertaken at baseline, six weeks, 12 weeks and six months post stroke. Information on resource use was also collected. RESULTS: There was no statistically significant difference between groups in any of the outcome measures or for resource use. Mann-Whitney U-tests for the RMI change from baseline scores to six weeks, 12 weeks and six months post stroke were p = 0.310; p = 0.970 and p = 0.282, respectively. CONCLUSION: Use of the Oswestry Standing Frame did not improve clinical outcome or provide resource savings for this severely disabled patient group.

Posted on Leave a comment

Whole-body vibration training compared with resistance training: effect on spasticity, muscle strength and motor performance in adults with cerebral palsy.

date: 09/01/2006
author: Ahlborg L, Andersson C, Julin P.
publication: J Rehabil Med. 2006 Sep;38(5):302-8.
pubmed_ID: 16931460

OBJECTIVE: The aim of this study was to evaluate the effect on spasticity, muscle strength and motor performance after 8 weeks of whole-body vibration training compared with resistance training in adults with cerebral palsy. METHODS: Fourteen persons with spastic diplegia (21-41 years) were randomized to intervention with either whole-body vibration training (n=7) or resistance training (n=7). Pre- and post-training measures of spasticity using the modified Ashworth scale, muscle strength using isokinetic dynamometry, walking ability using Six-Minute Walk Test, balance using Timed Up and Go test and gross motor performance using Gross Motor Function Measure were performed. RESULTS: Spasticity decreased in knee extensors in the whole-body vibration group. Muscle strength increased in the resistance training group at the velocity 30 degrees /s and in both groups at 90 degrees /s. Six-Minute Walk Test and Timed Up and Go test did not change significantly. Gross Motor Function Measure increased in the whole-body vibration group. CONCLUSION: These data suggest that an 8-week intervention of whole-body vibration training or resistance training can increase muscle strength, without negative effect on spasticity, in adults with cerebral palsy.

Posted on Leave a comment

Passive ankle dorsiflexion increases in patients after a regimen of tilt table-wedge board standing. A clinical report.

date: 11/01/1985
author: Bohannon RW, Larkin PA.
publication: Phys Ther. 1985 Nov;65(11):1676-8.
pubmed_ID: 4059330

We monitored the result of a tilt table-wedge board routine on the passive ankle dorsiflexion of 20 patients consecutively to determine the effectiveness of the treatment. The calculated frequency of the treatment, which was applied for 30 minutes on each of 5 to 22 treatment days, ranged from 2.3 to 6.4 treatments a week. All patients demonstrated increased passive ankle dorsiflexion. The increases ranged from 3 to 17 degrees and occurred at a calculated rate of 0.11 to 1.0 degrees a day. We believe the treatment is an effective clinical method for increasing passive ankle dorsiflexion in neurologically involved patients.

Posted on Leave a comment

Acute effects of whole-body vibration on muscle activity, strength, and power.

date: 05/20/2006
author: Cormie P, Deane RS, Triplett NT, McBride JM.
publication: J Strength Cond Res. 2006 May;20(2):257-61.
pubmed_ID: 16686550

The purpose of this study was to investigate the effects of a single bout of whole-body vibration on isometric squat (IS) and countermovement jump (CMJ) performance. Nine moderately resistance-trained men were tested for peak force (PF) during the IS and jump height (JH) and peak power (PP) during the CMJ. Average integrated electromyography (IEMG) was measured from the vastus medialis, vastus lateralis, and biceps femoris muscles. Subjects performed the 2 treatment conditions, vibration or sham, in a randomized order. Subjects were tested for baseline performance variables in both the IS and CMJ, and were exposed to either a 30-second bout of whole-body vibration or sham intervention. Subjects were tested immediately following the vibration or sham treatment, as well as 5, 15, and 30 minutes posttreatment. Whole-body vibration resulted in a significantly higher (p < or = 0.05) JH during the CMJ immediately following vibration, as compared with the sham condition. No significant differences were observed in CMJ PP; PF during IS or IEMG of the vastus medialis, vastus lateralis, or biceps femoris during the CMJ; or IS between vibration and sham treatments. Whole-body vibration may be a potential warm-up procedure for increasing vertical JH. Future research is warranted addressing the influence of various protocols of whole-body vibration (i.e., duration, amplitude, frequency) on athletic performance.

Posted on Leave a comment

A randomized controlled trial of standing programme on bone mineral density in non-ambulant children with cerebral palsy.

date: 02/01/2004
author: Caulton JM, Ward KA, Alsop CW, Dunn G, Adams JE, Mughal MZ.
publication: Arch Dis Child. 2004 Feb;89(2):131-5.
pubmed_ID: 14736627

BACKGROUND: Severely disabled children with cerebral palsy (CP) are prone to low trauma fractures, which are associated with reduced bone mineral density. AIMS: To determine whether participation in 50% longer periods of standing (in either upright or semi-prone standing frames) would lead to an increase in the vertebral and proximal tibial volumetric trabecular bone mineral density (vTBMD) of non-ambulant children with CP. METHODS: A heterogeneous group of 26 pre-pubertal children with CP (14 boys, 12 girls; age 4.3-10.8 years) participated in this randomised controlled trial. Subjects were matched into pairs using baseline vertebral vTBMD standard deviation scores. Children within the pairs were randomly allocated to either intervention (50% increase in the regular standing duration) or control (no increase in the regular standing duration) groups. Pre- and post-trial vertebral and proximal tibial vTBMD was measured by quantitative computed tomography (QCT). RESULTS: The median standing duration was 80.5% (9.5-102%) and 140.6% (108.7-152.2%) of the baseline standing duration in the control group and intervention group respectively. The mean vertebral vTBMD in the intervention group showed an increase of 8.16 mg/cm3 representing a 6% mean increase in vertebral vTBMD. No change was observed in the mean proximal tibial vTBMD. CONCLUSION: A longer period of standing in non-ambulant children with CP improves vertebral but not proximal tibial vTBMD. Such an intervention might reduce the risk of vertebral fractures but is unlikely to reduce the risk of lower limb fractures in children with CP.