Posted on Leave a comment

Bone mineral density in children with cerebral palsy.

date: 04/01/2001
author: Tasdemir HA, Buyukavci M, Akcay F, Polat P, Yildiran A, Karakelleoglu C.
publication: Pediatr Int. 2001 Apr;43(2):157-60.
pubmed_ID: 11285068

BACKGROUND: The purpose of the present study was to evaluate the severity of and factors related to osteopenia in children with cerebral palsy (CP). METHODS: Bone mineral density (BMD), calcium (Ca), phosphate (P), alkaline phosphatase (ALP), creatinine, parathyroid hormone (PTH) and 25-hydroxy vitamin D3 (25OHD3) concentrations were determined in 24 children with CP (15 ambulant, nine non-ambulant), aged between 10 months and 12 years (mean (+/-SD) 4.1+/-2.9 years). These vaules were compared with data obtained from a control group. RESULTS: Adjusted mean BMD values were lower in the patient group than in controls (P<0.05). However, there was no difference between BMD values of ambulant and non-ambulant patients. The Ca and P levels of the patient group were significantly higher than those of controls (P<0.05). CONCLUSIONS: The present study showed that BMD was decreased in all children with CP, but to a greater extent in non-ambulant children with CP, and immobilization is the major effective factor on bone mineralization.

Posted on Leave a comment

Bone-loading response varies with strain magnitude and cycle number.

date: 11/01/2001
author: Cullen DM, Smith RT, Akhter MP.
publication: J Appl Physiol. 2001 Nov;91(5):1971-6.
pubmed_ID: 11641332

Mechanical loading stimulates bone formation and regulates bone size, shape, and strength. It is recognized that strain magnitude, strain rate, and frequency are variables that explain bone stimulation. Early loading studies have shown that a low number (36) of cycles/day (cyc) induced maximal bone formation when strains were high (2,000 microepsilon) (Rubin CT and Lanyon LE. J Bone Joint Surg Am 66: 397-402, 1984). This study examines whether cycle number directly affects the bone response to loading and whether cycle number for activation of formation varies with load magnitude at low frequency. The adult rat tibiae were loaded in four-point bending at 25 (-800 microepsilon) or 30 N (-1,000 microepsilon) for 0, 40, 120, or 400 cyc at 2 Hz for 3 wk. Differences in periosteal and endocortical formation were examined by histomorphometry. Loading did not stimulate bone formation at 40 cyc. Compared with control tibiae, tibiae loaded at -800 microepsilon showed 2.8-fold greater periosteal bone formation rate at 400 cyc but no differences in endocortical formation. Tibiae loaded at -1,000 microepsilon and 120 or 400 cyc had 8- to 10-fold greater periosteal formation rate, 2- to 3-fold greater formation surface, and 1-fold greater endocortical formation surface than control. As applied load or strain magnitude decreased, the number of cyc required for activation of formation increased. We conclude that, at constant frequency, the number of cyc required to activate formation is dependent on strain and that, as number of cyc increases, the bone response increases.

Posted on Leave a comment

Extent and direction of joint motion limitation after prolonged immobility: an experimental study in the rat.

date: 12/01/1999
author: Trudel G, Uhthoff HK, Brown M.
publication: Arch Phys Med Rehabilitation. 1999 Dec;80(12):1542-7.
pubmed_ID: 10597804

OBJECTIVES: To test the hypotheses that contractures progress at different rates in relation to the time after immobilization, that immobilization in flexion leads to loss of extension range of motion, and that joints of sham-operated animals are better controls than the contralateral joint of experimental animals. STUDY DESIGN: Experimental, controlled study in which 40 adult rats had one knee joint immobilized at 135 degrees of flexion for up to 32 weeks and 20 animals underwent a sham procedure. At intervals of 2, 4, 8, 16, and 32 weeks, 8 experimental and 4 sham-operated animals were killed and their knee motion measured in flexion and extension. RESULTS: In the experimental group, the range of motion decreased in the first 16 weeks of immobility at an average rate of 3.8 degrees per week (p<.0001) to reach 61.1 degrees of restriction. A plateau was then observed from which the contracture did not progress further. The loss in range of motion occurred in extension, not in flexion. CONCLUSION: This study defined an acute stage of contractures starting at the onset of immobility and lasting 16 weeks, during which the range of motion was progressively restricted, and a chronic stage during which no additional limitation was detected. The loss in motion was attributed to posterior knee structures not under tension during immobilization in flexion. Contrary to the hypothesis, the contralateral joint was validated as a control choice for range-of-motion experiments.

Posted on Leave a comment

Regulation of bone mass by mechanical strain magnitude.

date: 08/01/1985
author: Rubin CT, Lanyon LE.
publication: Calcif Tissue Int. 1985 Jul;37(4):411-7.
pubmed_ID: 3930039

The in vivo remodeling behavior within a bone protected from natural loading was modified over an 8-week period by daily application of 100 consecutive 1 Hz load cycles engendering strains within the bone tissue of physiological rate and magnitude. This load regime resulted in a graded dose:response relationship between the peak strain magnitude and change in the mass of bone tissue present. Peak longitudinal strains below 0.001 were associated with bone loss which was achieved by increased remodeling activity, endosteal resorption, and increased intra-cortical porosis. Peak strains above 0.001 were associated with little change in intra-cortical remodeling activity but substantial periosteal and endosteal new bone formation.

Posted on Leave a comment

Effects of prolonged muscle stretch on reflex and voluntary muscle activations in children with spastic cerebral palsy.

date: 01/01/1990
author: Tremblay F, Malouin F, Richards CL, Dumas F.
publication: Scand J Rehabilitation Medicine. 1990;22(4):171-80.
pubmed_ID: 2263918

We studied the short term effects of a single session of prolonged muscle stretch (PMS) on reflex and voluntary muscle activations in 22 children with spastic cerebral palsy (CP) assigned to an experimental (n = 12) and a control group (n = 10). Children of the experimental group underwent PMS of the triceps surae (TS) by standing with the feet dorsiflexed on a tilt-table for 30 min, whereas children of the control group were kept at rest. The effects were determined by measuring the associated changes in torque and in electromyographic (EMG) activity of the TS and tibialis anterior (TA) muscles during both passive ankle movements and maximal static voluntary contractions. The results indicate that PMS led to reduced spasticity in ankle muscles as demonstrated by the significant reductions (p less than 0.05) of the neuromuscular responses (torque and EMG) to passive movement. These inhibitory effects lasted up to 35 min after cessation of PMS. In addition, the capacity to voluntarily activate the plantar flexors was significantly (p less than 0.05) increased post-PMS, but the capacity to activate the dorsiflexors was apparently not affected. These findings suggest that repeated sessions of PMS may have beneficial effects in the management of spasticity in children with CP.

Posted on Leave a comment

Technical note–a patient propelled variable-inclination prone stander.

date: 12/01/1983
author: Motloch WM, Brearley MN.
publication: Prosthet Orthot Int. 1983 Dec;7(3):176-7.
pubmed_ID: 6647014

A self-propelled mobile standing device is described with the facility of patient-operated inclination of the support platform, enabling objects on the floor to be reached. The device is provided with a removable tray at the level of the occupant’s chest.

Posted on Leave a comment

The vertical wheeler: a device for ambulation in cerebral palsy.

date: 10/01/1985
author: Manley MT, Gurtowski J.
publication: Arch Phys Med Rehabilitation. 1985 Oct;66(10):717-20.
pubmed_ID: 4051716
Outside_URL: http://www.ncbi.nlm.nih.gov/pubmed/4051716
The vertical wheeler is a new mobility aid that was specifically designed to help improve the quality of life for the handicapped child by providing mobility while standing. Results of a clinical trial in a population of patients with cerebral palsy are presented. Criteria were selected to allow evaluation of the rehabilitative effect of the device on the population. Results showed that the children in this cerebral palsy group all benefited from ambulation with the wheeler. Patients with spastic quadriparesis seemed to gain the most immediate benefit. The device contributed to improved mobility, posture, and self-image. The wheeler was safe and fun for the children. It has the potential for improving the psychologic and medical status of the child with severe locomotion impairment.

Posted on Leave a comment

Indications for a home standing program for individuals with spinal cord injury.

date: 09/01/1999
author: Walter JS, Sola PG, Sacks J, Lucero Y, Langbein E, Weaver F.
publication: J Spinal Cord Med. 1999 Fall;22(3):152-8.
pubmed_ID: 10685379

Additional analyses were conducted on a recently published survey of persons with spinal cord injury (SCI) who used standing mobility devices. Frequency and duration of standing were examined in relation to outcomes using chi square analyses. Respondents (n = 99) who stood 30 minutes or more per day had significantly improved quality of life, fewer bed sores, fewer bladder infections, improved bowel regularity, and improved ability to straighten their legs compared with those who stood less time. Compliance with regular home standing (at least once per week) was high (74%). The data also suggest that individuals with SCI could benefit from standing even if they were to begin several years after injury. The observation of patient benefits and high compliance rates suggest that mobile standing devices should be more strongly considered as a major intervention for relief from secondary medical complications and improvement in overall quality of life of individuals with SCI.

Posted on Leave a comment

Evaluation of the effects of muscle stretch and weight load in patients with spastic paraplegia.

date: 01/01/1981
author: Odeen I, Knutsson E.
publication: Scand J Rehabilitation Medicine. 1981;13(4):117-21.
pubmed_ID: 7347432
Clinical observations on patients with spastic paraplegia have indicated that a training regime including weight load on the lower limbs may reduce the muscular hypertonus. Due to the spontaneous fluctuations and great variability in muscle tone it is difficult to judge from clinical findings how the effects may be related to muscle stretch and weight load. Therefore, quantitative determination of the effects on muscle tone by stretch and loading was made in 9 paraplegic patients. Muscle tone was measured before and after 30 min of stretch or weight load in 8 sessions on 4 consecutive days. Stretch was obtained by bracing the foot in maximal dorsal flexion with patient in supine position. For weight load on the lower limbs, the patient stood on a tilt-table at an angle of 85 degrees with feet in 15 degrees dorsal or plantar flexion. Resistance to passive movements was determined during a series of sinusoidal ankle joint movements at three different speeds. After weight load in standing with the feet in dorsal or plantar flexion, the average reduction was 32 and 26%, respectively. After stretch in supine, the average reduction was 17%. Thus, the three procedures tested all resulted in reduction of muscle tone. The largest reductions were obtained by weight load with stretch imposed upon the calf muscles.

Posted on Leave a comment

Effects of a dynamic versus a static prone stander on bone material density and behavior in four children with severe cerebral palsy.

date: 03/01/2002
author: Gudjonsdottir, Bjorg MS/PT, Vicki Stemmons Mercer, PhD, PT
publication: Pediatric Physical Therapy 2002;14:38-46.
pubmed_ID: 17053680

PURPOSE: in this case series, we examined how two types of prone standers affected bone material density and behavioral variables in four children of preschool age with severe cerebral palsy. METHODS: In phase one, four children of preschool age participated in an eight-week standing program, standing for 30 minutes a day, five days a week. Two children stood in a conventional stander, and two stood in a new type of motorized (dynamic) stander that provides intermittent weight bearing. Measurements of bone material density before and after the program revealed increases in bone material density in both children who used a dynamic stander and one child who used a static stander. In phase two, all four subjects stood in both types of stander during three separate test sessions. RESULT: Measures of behavioral variables, including behavioral state, reactivity, goal directedness, and attention span, indicated little or no effect of type of stander on behavior. CONCLUSIONS: These results suggest there is potential value in additional research concerning the effects of static and dynamic standers on bone material density and behavior in children with cerebral palsy.