Posted on

Bone mineral status in paraplegic patients who do or do not perform standing

date: 1994 May;4(3):138-43.
author: Goemaere S.
publication: Osteoporos Int.
PubMed ID:8069052

Abstract

Bone mineral density (BMD) was assessed by dual-photon X-ray absorptiometry at the lumbar spine (L3, L4), the proximal femur and the femoral shaft, and by single-photon absorptiometry at the forearm in 53 patients with complete traumatic paraplegia of at least 1 year’s duration and in age- and sex-matched healthy controls. The patients did (n = 38) or did not (n = 15) regularly perform passive weightbearing standing with the aid of a standing device. Compared with the controls, the BMD of paraplegic patients was preserved in the lumbar spine and was markedly decreased in the proximal femur (33%) and the femoral shaft (25%). When considering all patients performing standing, they had a better-preserved BMD at the femoral shaft (p = 0.009), but not at the proximal femur, than patients not performing standing. BMD at the lumbar spine (L3, L4) was marginally higher in the standing group (significant only for L3; p = 0.040). A subgroup of patients performing standing with use of long leg braces had a significantly higher BMD at the proximal femur than patients using a standing frame or a standing wheelchair (p = 0.030). The present results suggest that passive mechanical loading can have a beneficial effect on the preservation of bone mass in osteoporosis found in paraplegics.

Posted on

Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography

date: 2000 Jan;38(1):26-32.
author: Frey-Rindova P.
publication: Spinal Cord.
PubMed ID:10762194

Abstract

OBJECTIVE:

To evaluate the loss of trabecular and cortical bone mineral density in radius, ulna and tibia of spinal cord injured persons with different levels of neurologic lesion after 6, 12 and 24 months of spinal cord injury (SCI).

DESIGN:

Prospective study in a Paraplegic Centre of the University Hospital Balgrist, Zurich.

SUBJECTS AND METHODS:

Twenty-nine patients (27 males, two females) were examined by the highly precise peripheral quantitative computed tomography (pQCT) soon after injury and subsequently at 6, 12 and in some cases 24 months after SCI. Using analysis of the bone mineral density (BMD), various degrees of trabecular and cortical bone loss were recognised. A rehabilitation program was started as soon as possible (1-4 weeks) after SCI. The influence of the level of neurological lesion was determined by analysis of variance (ANOVA). Spasticity was assessed by the Ashworth Scale.

RESULTS:

The trabecular bone mineral density of radius and ulna was significantly reduced in subjects with tetraplegia 6 months (radius 19% less, P<0.01; ulna 6% less, P>0.05) and 12 months after SCI (radius 28% less, P<0.01; ulna 15% less, P<0.05). The cortical bone density was significantly reduced 12 months after SCI (radius 3% less, P<0.05; ulna 4% less, P<0.05). No changes in BMD of trabecular or cortical bone of radius and ulna were detected in subjects with paraplegia. The trabecular BMD of tibia was significantly reduced 6 months (5% less, P<0.05) and 12 months after SCI (15% less, P<0.05) in all subjects with SCI. The cortical bone density of the tibia only was decreased after a year following SCI (7% less, P<0.05). No significant difference between both groups, subjects with paraplegia and subjects with tetraplegia was found for tibia cortical or trabecular BMD. There was no significant influence for the physical activity level or the degree of spasticity on bone mineral density in all subjects with SCI.

CONCLUSIONS:

Twelve months after SCI a significant decrease of BMD was found in trabecular bone in radius and in tibia of subjects with tetraplegia. In subjects paraplegia, a decrease only in tibia BMD occurred. Intensity of physical activity did not significantly influence the loss of BMD in all subjects with para- and tetraplegia. However, in some subjects regular intensive loading exercise activity in early rehabilitation (tilt table, standing) can possibly attenuate the decrease of BMD of tibia. No influence was found for the degree of spasticity on the bone loss in all subjects with SCI

 

Posted on

Leg skin temperature with body-weight-supported treadmill and tilt-table standing training after spinal cord injury

date: 2011 Jan;49(1):149-53. doi:
author: Cotie LM.
publication: Spinal Cord.
PubMed ID: 20479767

 

Abstract

STUDY DESIGN:

Randomized crossover.

OBJECTIVES:

Effects of body-weight-supported treadmill (BWST) and tilt-table standing (TTS) training on skin temperature and blood flow after spinal cord injury (SCI).

SETTING:

McMaster University, Canada.

METHODS:

Seven individuals with SCI participated in BWST and TTS training (3 times per week for 4 weeks, 4-week detraining between protocols). Skin temperature was measured before and after a single session of BWST or TTS, pre- and post-training. Leg blood flow was measured at rest pre- and post-training.

RESULTS:

Resting skin temperature decreased at four sites after 4 weeks of BWST training in comparison with the pre-training. Four weeks of TTS training resulted in resting skin temperature decreases post-training at the right thigh only. Both BWST and TTS training resulted in altered reactivity of skin temperature at all sites except the right calf in response to a single session of BWST and TTS. Post-BWST training, a single session of BWST stimulated increased temperature at all sites, whereas after TTS training a single session of TTS resulted in temperature decreases at two of the six sites. No changes were observed in resting blood flow with either BWST or TTS training.

CONCLUSION:

Increased resting skin temperature and decreased skin temperature reactivity have been linked to the development of pressure sores. BWST and TTS may stimulate different skin temperature responses and the impact on pressure sore development warrants further investigation.

Posted on

Tilt table standing for reducing spasticity after spinal cord injury

date: 1993 Oct;74(10):1121-2
author: Bohannon R.
publication: Arch Phys Med Rehabil
PubMed ID:8215868

 

Abstract

A patient with a T12 spinal cord injury and intractable extensor spasms of the lower extremities participated in tilt table standing trial on 5 nonconsecutive days to determine if the intervention would affect his spasticity and spasms. Each day’s standing trial was followed by an immediate reduction in lower extremity spasticity (measured using the modified Ashworth scale and pendulum testing). Standing was also accompanied by a reduction in spasms that lasted until the following morning. The reduction of spasms was particularly advantageous to the performance of car transfers. Tilt table standing merits further examination as a physical treatment of spasms that accompany central nervous system lesions.

Posted on

Comparison of the effects of body-weight-supported treadmill training and tilt-table standing on spasticity in individuals with chronic spinal cord injury.

date: 2011;34(5):488-94.
author: Adams MM, Hicks AL.
publication: J Spinal Cord Med.
PubMed ID: 22118256

Abstract

OBJECTIVE:

Determine the effects of body-weightsupported treadmill training (BWSTT) and tilt-table standing (TTS) on clinically assessed and self-reported spasticity, motor neuron excitability, and related constructs in individuals with chronic spinal cord injury (SCI).

DESIGN:

Random cross-over.

METHODS:

Seven individuals with chronic SCI and spasticity performed thrice-weekly BWSTT for 4 weeks and thrice-weekly TTS for 4 weeks, separated by a 4-week wash-out. Clinical (Modified Ashworth Scale, Spinal Cord Assessment Tool for Spinal reflexes) and self-report (Spinal Cord Injury Spasticity Evaluation Tool, Penn Spasm Frequency Scale) assessments of spasticity, quality of life (Quality of Life Index Spinal Cord Injury Version – III), functional mobility (FIM Motor Subscale), plus soleus H-reflex were measured at baseline, after the first training session and within 2 days of completing each training condition.

RESULTS:

In comparison with TTS, a single session of BWSTT had greater beneficial effects for muscle tone (effect size (ES) = 0.69), flexor spasms (ES = 0.57), and the H/M ratio (ES = 0.50). Similarly, flexor spasms (ES = 0.79), clonus (ES = 0.66), and self-reported mobility (ES = 1.27) tended to benefit more from 4 weeks of BWSTT than of TTS. Participation in BWSTT also appeared to be favorable for quality of life (ES = 0.50). In contrast, extensor spasms were reduced to a greater degree with TTS (ES = 0.68 for single session; ES = 1.32 after 4 weeks).

CONCLUSION:

While both BWSTT and TTS may provide specific benefits with respect to spasticity characteristics, data from this pilot study suggest that BWSTT may result in a broader range of positive outcomes.

Posted on

RESNA POSITION ON THE APPLICATION OF WHEELCHAIR STANDING DEVICES: 2013 CURRENT STATE OF THE LITERATURE

date: Dec. 23, 2013
author: Dicianno BE, Morgan A, Lieberman J, Rosen L
publication: Assit Technol.
pubmed_ID: 26910615

This article, approved by the Rehabilitation Engineering & Assistive Technology Society of North America Board of Directors on December 23, 2013, shares typical clinical applications and provides evidence from the literature supporting the use of wheelchair standers

Full Text